JavaCrol5)

hvaLr

n architecture svolution
from simple script to microserice




‘ JavaCro'l5)

Application architecture evolution,
from simple script to microservices

Igor Buzatovic
Inovativni trendovi d.o.o.




Application architecture evolution,
from simple script to microservices

Igor Buzatovié
Inovativni trendovi d.o.o.

Simple script

- No MVC

= Seript file per request type (URL)

- All aspects (getiing input params, fetching data,
presenting data) mixed together



javaCroE@

—

Simple script

- No MVC
- Script file per request type (URI)

- All aspects (getting input params, fetching data,
presenting data) mixed together




‘ Java'CroE)\-

Monolith

Components of "Monolith"

- Ul (web framework)
- Service Layer
- Data access layer (JPA)

+ Data storage (RDBMS, noSQL)




App. evolution examples

eBay
Monolithic Perl -> Monolithic C++ -> Java -> microservices

Twitter
Monolithic Rails -> JS / Rails / Scala -> microservices

Amazon
Monolithic C++ -> Perl / C++ -> Java / Scala -> microservices



Java'CroE)

Monolith - components

Controler 1

Controler 2

Ul Layer

Service Layer

Data Access Layer Data Access O1 Data Access O1 Data Access O1



'JavaCroE)
Monolith -> Microservices, why ?

High load handling ?

Easier to handle large data ?

More efficient caching

Much easier to understand the code

Each service can use different technologies (including
language)




JavaCrol5)

Microservice, what is it?

“Loosely-coupled service oriented architecture
with bounded contexts”

Adrian Cockcroft



Microsevices

S1

API INTERFACE
(mostly HTTP)

Data Access Object

S2

APl INTERFACE
(mostly HTTP)

API INTERFACE
{mostly HTTP)

Data Access Object

S3

API INTERFACE
(mostly HTTF)

S5

API INTERFACE
(mostly HTTP)

I JavaCrol5) H

S6

API INTERFACE
{mostly HTTF)




'Java Cro@i

Microservices - reactive principles

Responsive

The service responds in a timely manner if at all possible. (Reactive manifesto)
Client protects itself with asynchronous, non-blocking calls

Resillient

The service stays responsive in the face of failure.
Resilience is achieved by replication, containment, isolation and delegation.

Elastic

The service stays responsive under varying workload. Reactive Systems can react to changes in the
input rate by increasing or decreasing the resources allocated to service these inputs.

Messagge driven

Asynchronous message-passing over synchronous request-response.




Microservices - downsides

Communication overhaed

Much harder to control transactions

More complicated deployment (multiple clusters ,

versioning)

More complicated monitoring and debugging

_javaCroE




Netflix OSS Tools scroD |

Asgard

Web-based tool for managing cloud-based applications and infrastructure.

Hystrix
Latency and fault tolerance library designed to isolate points of access to remote systems, stop
cascading failure and enable resilience in complex distributed systems where failure is inevitable.

Ribbon

Inter Process Communication (remote procedure calls) library with built in software load balancers.
The primary usage model involves REST calls with various serialization scheme support.

Eureka
AWS Service registry for resilient mid-tier load balancing and failover.







Application architecture evolution,
from simple script to microservices

Igor Buzatovié
Inovativni trendovi d.o.o.

Simple script

- No MVC

= Seript file per request type (URL)

- All aspects (getiing input params, fetching data,
presenting data) mixed together



