
Session is Dead
Long live JWT

JavaCro Rovinj, Croatia – May 2017

Hrvoje Crnjak

Software Developer @ Five

@HrvojeCrnjak

Session vs. JWT

Reference vs. Data object

Stateful vs. Stateless

Debunked

(JSON Web Token)

NOT Authentication Protocol

NOT Authorization Protocol

Debunked

(JSON Web Token)

NOT Protocol

Standard for representing claims (data)

The catch is in how we use JWTs

Client – Server communication
Session ID + Cookie

POST /authenticate

username= &password=...

Client
Server

HTTP 200 OK
Set-Cookie: session=0B3...

https://app.yourapp.com

GET /api/user

Cookie: session=0B3...

HTTP 200 OK
{name: foo }

Find stored session
based on Session ID

Create session and
store it on server-side

POST /authenticate

username= &password=...

Client
Server

HTTP 200 OK
{token: ...JWT }

https://app.yourapp.com

GET /api/user
Authorization: Bearer ...JWT...

HTTP 200 OK
{name: foo }

Client – Server communication
JWT + Authorization header

Validate token
and extract data

Create token with
necessary User data
(basic info, roles, etc.)

Session vs. JWT analysis

Session
• Authentication

• On the Server
• Create Session

• Store Session

• Response
• Session ID

• Client storage in Cookie

• Accessing Resource
• Cookie header with Session ID

• Find Session based on ID

JWT
• Authentication

• On the Server
• Create Token

• DO NOT store Token

• Response
• Token

• Client storage up to JS

• Accessing resource
• Authorization header with JWT

• Read data from JWT itself

• JSON Web Token

• Pronounced “jot” /dʒɒt/

• Open standard
• IETF - RFC 7519

• Proposed in May 2015

• Standard for representing claims between parties
• Transferred securely and in compact and URL-safe way

• Compact and URL-safe
• Base64 encoded with URL-safe alphabet

• (- , _) instead of (+ , /)

• Claim
• A piece of information about a subject (user)

• Represented as name/value pair
• Claim Name - always string

• Claim Value - any JSON value

• Claim names
• Registered Claim names

• Defined by the JWT standard

• Public Claim names
• Defined by 3rd parties and registered at IANA

• Usually defined by standards that rely on JWT
• example : OpenId Connect (given_name, family_name, nicnkname, …)

• Private Claim names
• Custom names defined by JWT users

• Anyone creating and using JWTs in their App

• All Claims are optional

• Registered Claim names

{

jti : “JWT ID”

}

• Registered Claim names

{

jti : “JWT ID”,

iss : “JWT Issuer”

}

• Registered Claim names

{

jti : “JWT ID”,

iss : “JWT Issuer”,

sub : “Subject of JWT”

}

• Registered Claim names

{

jti : “JWT ID”,

iss : “JWT Issuer”,

sub : “Subject of JWT”,

aud : “Audience – intended recipients”

}

• Registered Claim names

{

jti : “JWT ID”,

iss : “JWT Issuer”,

sub : “Subject of JWT”,

aud : “Audience – intended recipients”,

iat : “Time at which JWT was issued”

}
Seconds Since
the Epoch

May 12, 1984

• Registered Claim names

{

jti : “JWT ID”,

iss : “JWT Issuer”,

sub : “Subject of JWT”,

aud : “Audience – intended recipients”,

iat : “Time at which JWT was issued”

}
Seconds Since
the Epoch

• Registered Claim names

{

jti : “JWT ID”,

iss : “JWT Issuer”,

sub : “Subject of JWT”,

aud : “Audience – intended recipients”,

iat : “Time at which JWT was issued”,

nbf : “Time before which JWT must not be accepted”

}

• Registered Claim names

{

jti : “JWT ID”,

iss : “JWT Issuer”,

sub : “Subject of JWT”,

aud : “Audience – intended recipients”,

iat : “Time at which JWT was issued”,

nbf : “Time before which JWT must not be accepted”,

exp : “Time after which JWT must not be accepted”

}

• Securing JWT
• Signed

• Claims in “plain text”

• Guaranteed token integrity

• Defined through JWS (JSON Web Signature) standard

• Encrypted
• Claims encrypted

• Guaranteed token integrity and data privacy

• Defined through JWE (JSON Web Encryption) standard

• Securing JWT
• Signed

• Claims in “plain text”

• Guaranteed token integrity

• Defined through JWS (JSON Web Signature) standard

• Encrypted
• Claims encrypted

• Guaranteed token integrity and data privacy

• Defined through JWE (JSON Web Encryption) standard

• Signing JWT
• A number of supported algorithms

• Defined in JWA (JSON Web Algorithms) standard

• Most notable are
• HS256 – HMAC using SHA-256

• Symmetric key alg.

• Offers integrity and authenticity

• RS256 – RSA using SHA-256

• ES256 – ECDSA using SHA-256
• Asymmetric key alg.

• Offers integrity, authenticity and non-repudiation

• Composing JWT

• Composing JWT

• 3 parts
• Header

• Holds info about algorithm used for signing
• Payload

• Holds claims
• Signature

• Separated by “dot” and Base64 encoded

PayloadHeader Signature

• Composing JWT

{
sub : "1234567890",
name : "John Doe",
admin : true

}

PayloadHeader Signature

Base64 encode data

• Composing JWT

{
alg : “HS256",
typ : “JWT“

}

Base64 encode data

PayloadHeader Signature

• Composing JWT

SIGN (
encoded_Header + “.” + encoded_Payload
, secretKey
)

Base64 encode data

PayloadHeader Signature

• Composing JWT

PayloadHeader Signature

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

FAQ #1

Who can create JWTs?

Anyone who knows how to create them

• Pick a library and start coding!
• jjwt , java-jwt , etc.

FAQ #2

Who can read JWTs?

Anyone who knows how to read them

• You need
• Library (again)

• A secret key if you want to verify JWTs validity
• For clients (like web browsers) that’s not necessary

• For servers it should be

FAQ #3

How can JWTs be transferred between parties?

The standard doesn’t specify that

• Possible scenarios
• Authorization header

• Authorization : Bearer ..JWT… scheme used

• Most common, standardized

• Custom header

• Part of URL

• Part of request body

JWT is Self-Contained

Self-contained

• All the relevant data is inside JWT
• User information represented through claims

• Data required to check its validity

• Benefits
• Client-side

• Data can be read directly from token

• User ID, name, email, roles, …

• Server-side
• On the next slide …

Session ID
JSESSIONID=8D4D409560B
D4D0CCCA00105325115F3

JWT
{
sub : "1234567890",
name : "John Doe",
role : “ADMIN”

}

JWT is Stateless

Stateless

• JWT is self-contained
• No need for State

• No data stored on Server-side

GET /api/user

Cookie: session=

Session
Storage

GET /api/user

Authorization: Bearer ...JWT...

Session
Storage

JWT is Scalable

Scalable

• State is evil
• When we use Session…

POST /api/event

Cookie: session=

Session
Storage

Reverse
Proxy

GET /api/event/1

Cookie: session=

Scalable

• State is evil
• No State (Session) no problem!

• No worries about
• Session replication

• Synchronization

• Inter-node communication

POST /api/event

Authorization: Bearer ...JWT...

Session
Storage

Reverse
Proxy

GET /api/event/1

Authorization: Bearer ...JWT...

JWT is more flexible

Flexible

• Content of JWT completely configurable

• Token creation and usage can be separated

GET /api/event
Authorization: Bearer ...JWT...

HTTP 200 OK
{name: foo }

Auth.
Provider

Service
Provider

Client

https://auth.outsorce.com

https://your.app.com

Flexible

• “Separation of concerns”
• Benefits

• Outsource your auth. concerns

• FB, Google, Amazon, Auth0, etc.

• Disadvantages
• Someone else can create valid tokens for your service

• You need to trust the Auth. Provider

• Setup
• Register your App with Auth. Provider

• Define claims needed in JWT

• Agree on a shared key

JWT is immune to CSRF
attacks*

Immune to CSRF*

• “Session riding”
• User tricked into making harmful requests

• User already logged to that service

• Relies on Session Cookie

• No Session Cookie
• No Problem

Quick recap

JWT Pros

• Self-contained

• Stateless

• Scalable

• More flexible
• Auth. outsourcing

• Immune to CSRF*

JWT Cons

Size

Size

• Smallest JWT larger than Session ID
• Avg. Session ID + Cookie name = 45 Bytes

• Header size constraints
• HTTP defines none

• But servers do
• Tomcat – 8 KB

• Jetty – 6 KB

No. of Claims Size (Bytes)

0 75

1 125

3 150

5 225

10 350

15 550

Storing and Sending JWTs

Storage and transmission

• With Cookies everything is handled automatically
• Server instructs Browser to store Session ID

• Browser automatically sends stored Session ID

• With JWTs
• Storage

• Handled by client-side JS

• Options
• Cookie (not the same as Cookies used to store Session ID)

• LocalStorage

• Transmission
• Handled by client-side JS

• Options
• Some frameworks have built-in support

More vulnerable to XSS

XSS problem

• Cross-site scripting
• Like “SQL injection” – but for client-side JS

• Rogue JS
• It can

• Change the data displayed to the User
• Make harmful requests to the Server

• It can’t
• Steal your Session ID (inside HttpOnly Cookie)

• But it can steal JWT
• Handled by client-side JS

• Solution
• Sanitize User inputs!

Signed, not encrypted*

Signed, not encrypted*

• Common use-case
• Signed JWTs

• Readable on client-side

• “Solution”
• Use encrypted JWTs

• Disadvantage
• Client can’t read User info from JWT

• Client needs to contact Server to get that info

• Best practice
• Don’t put anything too sensitive inside JWT

• Always use HTTPS

Token revocation

Token revocation

• How to deny access to already logged User?

• Friendly User
• User pressed Logout button

• Session
• Session is invalidated server-side

• JWT
• Token is deleted client-side

Token revocation

• How to deny access to already logged User?

• Harmful User
• Hijacked Session ID or JWT

• Someone is sending requests with stolen credentials

• Session
• Session is invalidated server-side

• JWT
• No explicit way of revoking already issued tokens

• Only trade-offs

Token revocation

• “Revoking” JWT token
• Keep a list of revoked JWTs

• Disadvantage
• Introducing state to server-side

• Make JWTs short-lived
• Disadvantage

• User needs to login more frequently

• Refresh tokens can be used to mitigate frequent login issue

• Nuclear option
• Change JWT signing key

• Disadvantage
• Invalidate all tokens

• All users denied access

Quick recap

JWT Pros

• Self-contained

• Stateless

• Scalable

• More flexible
• Auth. outsourcing

• Immune to CSRF*

JWT Cons

• Size

• Storage and transmission

• More vulnerable to XSS

• Signed vs. encrypted

• Token revocation

Quick recap

JWT Pros

• Self-contained

• Stateless

• Scalable

• More flexible
• Auth. outsourcing

• Immune to CSRF*

JWT Cons

• Size

• Storage and transmission

• More vulnerable to XSS

• Signed vs. encrypted

• Token revocation

Thanks for your time!
Q & A

Spring Security + JWT
example

Github

hcrnjak / spring-jwt-example

