
Service Discovery 
in OSGi

Beyond the JVM using Docker and Consul



About me

CTO @ Dexels 

Architect at Sendrato Wearables 

OSGi tinkerer 

NoSQL advocate



Service Discovery

• As old as distributed systems 

• Find system components 

• Prevent hard-coding network addresses 

• Important for micro service architectures



Service Discovery

• Finding services by exploring systems 

• Use a well-known central registry where every 
service registers



Service Repository

• Watch out for a single point of failure 

• Distributed key-value stores 

• Low volume 

• Resilience and availability are most important



Service Discovery (SOA)

• Can change providers at will 

• Access to many 3rd party services 

• Services go shopping for other services 

• Services can respond to ‘markets’



Docker containers

• Light-weight virtual machine 

• Process with a filesystem and a network 

• Universal, polyglot application deployment 
mechanism 

• DockerHub image store



Mini demo



Docker from a service 
perspective

• An image 

• An id 

• Exposed ports 

• ENV variables (& labels since Docker 1.6)



Docker

• Makes reasoning about services much easier



Docker

• Restful HTTP daemon on each host 

• CLI tools use the HTTP interface to the daemon



Service discovery

So how do we ‘discover’ these services? 

We ask the Docker daemon



What’s missing?

HostIp: 192.168.59.103 

HostPort: 49212 

ContainerPort: 3306 

Protocol: TCP 

… we need more metadata



Metadata
• Which service is this (name, tags) 

• What protocol? How do I consume the service? 

We can add them as environment parameters 



Monitor the Docker Daemon

• Completely generic 

• No need for a registry 

• Only require a few ‘annotations’



This was the easy part



Dynamic Services

• Any service can just appear 

• Multiple instances can appear 

• Instances can disappear without warning 

• Service cascades



OSGi

• Java based dynamic service framework 

• Since 1999 

• Initially for embedded systems 

• Now very popular in cloud deployments



OSGi
• Central ‘Service Bus’ 

• Any Java object can be registered as a service 

• Code can redeploy on the fly 

• Services can come and go dynamically 

• Services can depend on other services



Docker & OSGi

• Monitor the Docker daemon 

• Inject into OSGi



Docker & OSGi

• Mismatch between Java objects and Docker 
connection data 

• The Docker ‘monitor’ won’t know what a service 
is really about



Configuration Admin

• Create Configuration objects based on docker 
data 

• Leave the actual interpretation to ‘driver bundles’



Docker

Container

Container

OSGi Environment

Config

Config

Bridge

Factory

Instance

Instance



Another demo!



Limitations

• Single host* 

• Docker API Security 

• Scalability



Consul
• Distributed Key/Value configuration store 

• Like Etcd or Zookeeper 

• Very robust for node failure 

• But specifically built for Service Discovery 

• Nice web UI



Consul
Docker

Container

Container
Container

OSGi 
Environment

Config

Config
Config

Consul Bridge

Consul 
Cluster

Node

Node
Node

Host Bridge



Final demo!



Future work

• Conventions on metadata would be nice 

• Better security model for Docker 

• Use other sources of configuration like 
Kubernetes



Thank you!
frank@dexels.com 

Twitter @lyaruu 

Tasman: https://github.com/flyaruu/tasman 

Blog: http://www.codemonkey.nl/

https://github.com/flyaruu/tasman
http://www.codemonkey.nl/

