
Spring @Async

Dragan Juričić, PBZ

May 2015



Topics

2

 Concept of thread pools

 Servlet 3 async configuration

 Task Execution and Scheduling

 Servlet 3 - asynchronous request processing

 Benefits and downsides



Concept of thread pools

3



Concept of thread pools

 thread per request – server model (Tomcat, Jetty, WAS...)

 simplistic model - create a new thread for each task

 disadvantages of the thread-per-task approach:

 overhead of creating creating and destroying threads

 too many threads cause the system to run out of memory

 thread pools based on work queue offers a solution

 Spring TaskExecutor - abstraction for thread pooling

4



TaskExecutor types

5

pre-built implementations included with the Spring

 SimpleAsyncTaskExecutor - starts up a new thread for each 

invocation, support a concurrency limit

 SyncTaskExecutor - implementation doesn't execute 

invocations asynchronously, takes place in the calling thread

 ConcurrentTaskExecutor - wrapper for a Java 5 

java.util.concurrent.Executor

 ThreadPoolTaskExecutor - exposes the Executor

configuration parameters as bean properties

 WorkManagerTaskExecutor - implements the CommonJ

WorkManager interface - standard across IBM's



Servlet 3 async configuration

6



Servlet 3 async configuration

 Spring web application configuration:

 XML config - update web.xml to version 3.0

 JavaConfig - via WebApplicationInitializer interface

 DispatcherServlet need to have:

 „asyncSupported” flag

 Filter involved in async dispatches:

 „asyncSupported” flag

 ASYNC dispatcher type

7



Spring MVC async configuration

 WebMvcConfigurationSupport – the main class providing 

the configuration behind the MVC JavaConfig:

 the default timeout value for async requests

 TaskAsyncExecutor (default is SimpleAsyncTaskExecutor)

protected void configureAsyncSupport(AsyncSupportConfigurer configurer) {

configurer.setDefaultTimeout(30*1000L); 

configurer.setTaskExecutor(mvcTaskExecutor());

}

protected ThreadPoolTaskExecutor mvcTaskExecutor() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(10);

executor.setQueueCapacity(100);

executor.setMaxPoolSize(25);

return executor;

}

8



Task Execution and Scheduling

9



 @Async annotation - executing tasks asynchronously

(annotation on a method)

 the caller will return immediately and the actual execution of 

the method will occur in a task submitted to TaskExecutor

 methods are required to have a Future<T> return value
@Async

Future<Task> returnSomething(int i) { 

// this will be executed asynchronously

return new AsyncResult<Task>(results);

}

Spring wraps call to this method in a Runnable instance and 

schedule this Runnable on a task executor

10

Asynchronous invocation in Spring 3.0

http://docs.oracle.com/javase/6/docs/api/java/lang/Runnable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Runnable.html


Async method return value

 Future<T> is a proxy or a wrapper around an object - container that

holds the potential result

 asynchronous task done - extract result

 Future<T> methods:

 get() - blocks and waits until promised result is available 

 isDone() - poll if the result has arrived

 cancel() - attempts to cancel execution of this task

 isCanceled() - returns true if this task was cancelled before it completed normally.

 Concrete implementation AsyncResult - wrap result in AsyncResult

implementing Future<T> interface

11



Exceptions with @Async

 Exception that was thrown during the method execution

 @Async method has a Future typed return value - exception will be thrown 

when calling get() method on the Future result

 @Async method has void return type - the exception is uncaught and 

cannot be transmitted

 void return type - AsyncUncaughtExceptionHandler can be provided 

to handle such exceptions

12



The @Scheduled Annotation

 TaskScheduler abstraction for scheduling tasks:

 TimerManagerTaskScheduler - delegates to a CommonJ TimerManager

instance

 ThreadPoolTaskScheduler external thread management is not a 

requirement (implements Spring’s TaskExecutor)

 @Scheduled annotation – add to a method along with trigger metadata
@Scheduled(fixedDelay=5000)

public void doSomething() {

// something that should execute periodically

}

@Scheduled(cron="* 15 9-17 * * MON-FRI")

public void doSomething() {

// something that should execute on weekdays only

}

13



Servlet 3 - asynchronous request processing

14



Asynchronous request handling

 Spring 3.2 introduced Servlet 3 based asynchronous request processing

 controller method can now return Callable or DeferredResult instance

 Servlet container thread is released and allowed to process other request:

 Callable uses TaskExecutor thread

 DeferredResult uses thread not known to Spring

 Asynchronous request processing:

 Controller returns and Spring MVC starts async processing

 Servlet and all filters exit the request thread, but response remains open

 Other thread will complete processing and „dispetch” request back to 

Servlet

 Servlet is invocked again and processing resumes with async result

15



Callable – an example controller method

@RequestMapping(value = {"callable.html"}, method = RequestMethod.GET)

public Callable<String> callableView(final ModelMap p_model) {

return new Callable<String>() {

@Override

public String call() throws Exception {

//... processing

return „someView";

}

};

}

WebAsyncTask – wrap Callable for customization:

 timeout

 TaskExecutor

16



DeferredResult – an example controller method

@RequestMapping("/response-body") 

@ResponseBody

public DeferredResult<String> quotes() {

DeferredResult<String> deferredResult = new 

DeferredResult<String>();

// Save the deferredResult in in-memory queue ...

return deferredResult;

}

// In some other thread...

deferredResult.setResult(data);

17



Exception handling for async requests

 What happens if a Callable or DeferredResult returned from a controller

method raises an Exception?

 Callable

 @ExeceptionHandler method in the same controller

 one of the configured HandlerExceptionResolver instances

 DeferredResult

 calling setErrorResult() method and provide an Exception or any

other Object as result

 @ExeceptionHandler method in the same controller

 one of the configured HandlerExceptionResolver instances

18



Benefits and downsides

19



Benefits

@Async method:

 asynchronous method calls solves a critical scaling issue

 the longer the task takes and the more tasks are invoked - the more benefit 

with making things asynchronous 

 Async request:

 decouple processing from Servlet container thread - longer request can

exhaust container thread pool quickly

 processing of AJAX applications efficiently

 browser real-time update – server push (alternative to standard HTTP 

request-response approaches: polling, long polling, HTTP streaming)

 Servlet 3 specification:

 asynchronous support

 JavaConfig without need for web.xml and enhancements to servlet API

20



Downsides

21

 threading risks

 additional configuration (servlet, filter, thread pool...)

 asynchronous method calls adds a layer of indirection - no longer dealing 

directly with the results, but must instead poll for them

 converting request or method calls to an asynchronous approach may 

require extra work



References

 http://spring.io/

 http://oracle.com/

 http://docs.spring.io/spring/docs/current/spring-framework-

reference/html/scheduling.html

 http://www.slideshare.net/bruce.snyder/beyond-horizontal-scalability-concurrency-

and-messaging-using-spring

 http://www.slideshare.net/chintal75/asynchronous-programmingtechniques

 http://www.ibm.com/developerworks/library/j-jtp0730.html

22


